Dysfunction of Myosin Light-Chain 4 (MYL4) Leads to Heritable Atrial Cardiomyopathy With Electrical, Contractile, and Structural Components: Evidence From Genetically-Engineered Rats

肌球蛋白轻链 4 (MYL4) 功能障碍可导致具有电、收缩和结构成分的遗传性心房心肌病:来自转基因大鼠的证据

阅读:5
作者:Wenhui Peng, Miaoxin Li, Hailing Li, Kai Tang, Jianhui Zhuang, Jianguo Zhang, Jingjing Xiao, Hui Jiang, Dali Li, Yongchun Yu, Pak C Sham, Stanley Nattel, Yawei Xu

Background

There is increasing interest in the concept of atrial cardiomyopathy, but the underlying molecular and mechanistic determinants remain poorly defined. We identified a family with heritable atrial cardiomyopathy manifesting as progressive atrial-selective electromechanical dysfunction, tachyarrhythmias, and bradyarrhythmias requiring pacemaker implantation. Myosin light-chain 4 (MYL4), encoding the atrial-selective essential myosin light chain, was identified as a candidate gene. We used genetically modified rat models to investigate the role of MYL4 in atrial cardiomyopathy.

Conclusions

Loss-of-function MYL4 gene variants cause progressive atrial cardiomyopathy in humans and rats. Our findings identify MYL4 as a key gene required for atrial contractile, electrical and structural integrity. These results improve our understanding of the molecular basis of atrial cardiomyopathy and introduce new models for further mechanistic analysis.

Results

Exome sequencing and systematic bioinformatic analyses identified a rare missense variant of MYL4 (c.31G>A [p.E11K]) in a large multiplex atrial cardiomyopathy family pedigree. The mutation cosegregated with atrial standstill (selected as the principal presenting trait) with a logarithm of the odds score of 5.3. The phenotype of rats with MYL4 mutation knock-in confirmed the causative role of the mutation. MYL4 knockout rats showed a similar atrial cardiomyopathy phenotype, whereas rats with an adjacent 4-amino-acid deletion showed no phenotype. Both MYL4 p.E11K knock-in rats and MYL4 knockout rats showed progressive atrial electrophysiological, contractile, and fibrotic abnormalities, similar to affected patients. Biochemical analyses of MYL4 p.E11K mutation rats showed activation of proapoptotic and profibrotic signaling, along with increased atrial-cardiomyocyte terminal deoxynucleotidyl transferase dUTP nick end labeling staining, suggesting enhanced apoptotic cell death, findings that were mimicked by in vitro adenoviral transfer of the mutant gene to neonatal-rat cardiomyocytes. Conclusions: Loss-of-function MYL4 gene variants cause progressive atrial cardiomyopathy in humans and rats. Our findings identify MYL4 as a key gene required for atrial contractile, electrical and structural integrity. These results improve our understanding of the molecular basis of atrial cardiomyopathy and introduce new models for further mechanistic analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。