CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells

CRISPR/Cas9 介导的人类 GPM6B 中 GA 重复序列删除导致神经细胞从 NT2 细胞分化中断

阅读:10
作者:Hadi Bayat, Maryam Mirahmadi, Zohreh Azarshin, Hamid Ohadi, Ahmad Delbari, Mina Ohadi

Abstract

The human neuron-specific gene, GPM6B (Glycoprotein membrane 6B), is considered a key gene in neural cell functionality. This gene contains an exceptionally long and strictly monomorphic short tandem repeat (STR) of 9-repeats, (GA)9. STRs in regulatory regions, may impact on the expression of nearby genes. We used CRISPR-based tool to delete this GA-repeat in NT2 cells, and analyzed the consequence of this deletion on GPM6B expression. Subsequently, the edited cells were induced to differentiate into neural cells, using retinoic acid (RA) treatment. Deletion of the GA-repeat significantly decreased the expression of GPM6B at the RNA (p < 0.05) and protein (40%) levels. Compared to the control cells, the edited cells showed dramatic decrease of the astrocyte and neural cell markers, including GFAP (0.77-fold), TUBB3 (0.57-fold), and MAP2 (0.2-fold). Subsequent sorting of the edited cells showed an increased number of NES (p < 0.01), but a decreased number of GFAP (p < 0.001), TUBB3 (p < 0.05), and MAP2 (p < 0.01), compared to the control cells. In conclusion, CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B, led to decreased expression of this gene, which in turn, disrupted differentiation of NT2 cells into neural cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。