Glycyrrhizic Acid Attenuates the Inflammatory Response After Spinal Cord Injury by Inhibiting High Mobility Group Box-1 Protein Through the p38/Jun N-Terminal Kinase Signaling Pathway

甘草酸通过 p38/Jun N 端激酶信号通路抑制高迁移率族蛋白 B1 蛋白,减轻脊髓损伤后的炎症反应

阅读:9
作者:Zhiwu Wu, Zhihua Wang, Zhiping Xie, Huaxin Zhu, Chengcai Li, Shenke Xie, Wu Zhou, Zhixiong Zhang, Meihua Li

Background

Neuroinflammation is an important secondary aggravating factor in spinal cord injury (SCI). Inhibition of the inflammatory response is critical for SCI treatment. Glycyrrhizic acid (GA) is an anti-inflammatory drug, but its utility for SCI is unclear. This study aimed to evaluate the effects of GA on inflammation after SCI and the underlying mechanism.

Conclusions

GA attenuates the inflammatory response after SCI by inhibiting HMGB1 through the p38/JNK signaling pathway and thus has therapeutic potential for SCI.

Methods

Cell counting kit-8 assays were performed to assess the viability of highly aggressively proliferating immortalized cells that had been treated with lipopolysaccharide (LPS) and/or GA. Reverse transcription quantitative polymerase chain reaction and Western blotting were performed to assess expression of high mobility group box-1 protein (HMGB1), ionized calcium binding adaptor molecule 1, and inflammatory factors in vitro and in vivo. GA (100 mg/kg) was intraperitoneally injected into rats. Anti-inflammatory effects of GA were analyzed in SCI tissues. p38/Jun N-terminal kinase signaling pathway proteins were analyzed by Western blotting.

Results

Cell counting kit-8 assay results showed that treatment with 100 ng/mL LPS for 12 hours was optimal. After LPS treatment, highly aggressively proliferating immortalized cells were activated; messenger RNA expression levels of HMGB1 and inflammatory factors were increased. GA significantly inhibited LPS-induced HMGB1 expression and inflammatory responses, as determined by reverse transcription quantitative polymerase chain reaction and Western blotting. Transfection with an HMGB1-overexpression plasmid reversed the anti-inflammatory effects of GA. In addition, intraperitoneal injection of GA (100 mg/kg) into rats for 3 days significantly reduced expression levels of HMGB1 and inflammatory factors after SCI in vivo. GA reduced phosphorylation, but not levels, of p38 and Jun N-terminal kinase proteins. Conclusions: GA attenuates the inflammatory response after SCI by inhibiting HMGB1 through the p38/JNK signaling pathway and thus has therapeutic potential for SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。