Conclusions
GOLPH3 conferred resistance of LUAD to ionizing radiation via stabilizing EGFR, and targeted suppression of GOLPH3 might be considered as a potential therapeutic strategy for sensitizing LUAD to radiation therapy.
Purpose
Radioresistance is a major cause of treatment failure in tumor radiation therapy, and the underlying mechanisms of radioresistance are still elusive. Golgi phosphoprotein 3 (GOLPH3) has been reported to associate tightly with cancer progression and chemoresistance. Herein, we explored whether GOLPH3 mediated radioresistance of lung adenocarcinoma (LUAD) and whether targeted suppression of GOLPH3 sensitized LUAD to radiation therapy.
Results
In tumor tissues of 33 patients with LUAD, the expression of GOLPH3 showed significant increases compared with those in matched normal tissues. Knocking down GOLPH3 reduced the clonogenic capacity, impaired double-strand break (DSB) repair, and enhanced apoptosis after irradiation. In contrast, reversal of GOLPH3 depletion rescued the impaired repair of radiation-induced DSBs. Mechanistically, loss of GOLPH3 accelerated the degradation of EGFR in lysosome, causing the reduction in EGFR levels, thereby weakening nuclear accumulation of EGFR and attenuating the activation of DNA-PK. Furthermore, adenovirus-mediated GOLPH3 knockdown could enhance the ionizing radiation response in the LUAD xenograft model. Conclusions: GOLPH3 conferred resistance of LUAD to ionizing radiation via stabilizing EGFR, and targeted suppression of GOLPH3 might be considered as a potential therapeutic strategy for sensitizing LUAD to radiation therapy.
