Identification of copy number variation-driven molecular subtypes informative for prognosis and treatment in pancreatic adenocarcinoma of a Chinese cohort

鉴定拷贝数变异驱动的分子亚型,为中国人群胰腺腺癌的预后和治疗提供参考

阅读:8
作者:Qian Zhan, Chenlei Wen, Yi Zhao, Lu Fang, Yangbing Jin, Zehui Zhang, Siyi Zou, Fanlu Li, Ying Yang, Lijia Wu, Jiabin Jin, Xiongxiong Lu, Junjie Xie, Dongfeng Cheng, Zhiwei Xu, Jun Zhang, Jiancheng Wang, XiaXing Deng, Hao Chen, Chenghong Peng, Hongwei Li, Henghui Zhang, Hai Fang, Chaofu Wang, Baiyong

Background

Pancreatic adenocarcinoma (PAAD) is one of the most lethal carcinomas, and the current histopathological classifications are of limited use in clinical decision-making. There is an unmet need to identify new biomarkers for prognosis-informative molecular subtyping and ultimately for precision medicine.

Methods

We profiled genomic alterations for 608 PAAD patients in a Chinese cohort, including somatic mutations, pathogenic germline variants and copy number variations (CNV). Using the CNV information, we performed unsupervised consensus clustering of these patients, differential CNV analysis and functional/pathway enrichment analysis. Cox regression was conducted for progression-free survival analysis, the elastic net algorithm used for prognostic model construction, and rank-based gene set enrichment analysis for exploring tumor microenvironments. Findings: Our data did not support prognostic value of point mutations in either highly mutated genes (such as KRAS, TP53, CDKN2A and SMAD4) or homologous recombination repair genes. Instead, associated with worse prognosis were amplified genes involved in DNA repair and receptor tyrosine kinase (RTK) related signalings. Motivated by this observation, we categorized patients into four molecular subtypes (namely repair-deficient, proliferation-active, repair-proficient and repair-enhanced) that differed in prognosis, and also constructed a prognostic model that can stratify patients with low or high risk of relapse. Finally, we analyzed publicly available datasets, not only reinforcing the prognostic value of our identified genes in DNA repair and RTK related signalings, but also identifying tumor microenvironment correlates with prognostic risks. Interpretation: Together with the evidence from genomic footprint analysis, we suggest that repair-deficient and proliferation-active subtypes are better suited for DNA damage therapies, while immunotherapy is highly recommended for repair-proficient and repair-enhanced subtypes. Our

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。