Activated cholesterol metabolism is integral for innate macrophage responses by amplifying Myd88 signaling

活化的胆固醇代谢通过放大 Myd88 信号传导,对先天性巨噬细胞反应至关重要

阅读:5
作者:Sumio Hayakawa, Atsushi Tamura, Nikita Nikiforov, Hiroyuki Koike, Fujimi Kudo, Yinglan Cheng, Takuro Miyazaki, Marina Kubekina, Tatiana V Kirichenko, Alexander N Orekhov, Nobuhiko Yui, Ichiro Manabe, Yumiko Oishi

Abstract

Recent studies have shown that cellular metabolism is tightly linked to the regulation of immune cells. Here, we show that activation of cholesterol metabolism, involving cholesterol uptake, synthesis, and autophagy/lipophagy, is integral to innate immune responses in macrophages. In particular, cholesterol accumulation within endosomes and lysosomes is a hallmark of the cellular cholesterol dynamics elicited by Toll-like receptor 4 activation and is required for amplification of myeloid differentiation primary response 88 (Myd88) signaling. Mechanistically, Myd88 binds cholesterol via its CLR recognition/interaction amino acid consensus domain, which promotes the protein's self-oligomerization. Moreover, a novel supramolecular compound, polyrotaxane (PRX), inhibited Myd88‑dependent inflammatory macrophage activation by decreasing endolysosomal cholesterol via promotion of cholesterol trafficking and efflux. PRX activated liver X receptor, which led to upregulation of ATP binding cassette transporter A1, thereby promoting cholesterol efflux. PRX also inhibited atherogenesis in Ldlr-/- mice. In humans, cholesterol levels in circulating monocytes correlated positively with the severity of atherosclerosis. These findings demonstrate that dynamic changes in cholesterol metabolism are mechanistically linked to Myd88‑dependent inflammatory programs in macrophages and support the notion that cellular cholesterol metabolism is integral to innate activation of macrophages and is a potential therapeutic and diagnostic target for inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。