Inhibition of Histone Methyltransferases EHMT1/2 Reverses Amyloid-β-Induced Loss of AMPAR Currents in Human Stem Cell-Derived Cortical Neurons

抑制组蛋白甲基转移酶 EHMT1/2 可逆转淀粉样β蛋白诱导的人类干细胞衍生皮质神经元 AMPAR 电流损失

阅读:5
作者:Lin Lin, Aiyi Liu, Hanqin Li, Jian Feng, Zhen Yan

Abstract

Emerging evidence suggests that epigenetic dysregulation of gene expression is one of the key molecular mechanisms of neurodegeneration and Alzheimer's disease (AD). However, little is known about the role of epigenetic dysregulation on synaptic dysfunction in humans, because of the difficulties of obtaining live human neurons. Here we generated mature human cortical neurons differentiated from human embryonic stem cells, and exposed them to amyloid-β (Aβ). We found that the histone methyltransferase, EHMT1, which catalyzes histone lysine 9 dimethylation (H3K9me2, a mark for gene repression), was significantly elevated in Aβ-treated human stem cell-derived neurons. Aβ treatment led to a significant reduction of AMPAR-mediated whole-cell current and excitatory postsynaptic current. Application of BIX01294, a selective inhibitor of EHMT1/2, restored AMPAR currents and glutamatergic synaptic transmission in Aβ-treated human cortical neurons. These results suggest that inhibition of the aberrant histone methylation is a novel approach to reverse Aβ-induced synaptic deficits in human neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。