The phosphoproteomic and interactomic landscape of qGL3/OsPPKL1-mediated brassinosteroid signaling in rice

qGL3/OsPPKL1介导的水稻油菜素内酯信号磷酸化蛋白质组学和相互作用组学图谱

阅读:6
作者:Xiuying Gao, Jiaqi Zhang, Jianbo Li, Yuji Wang, Rong Zhang, Huaying Du, Jing Yin, Guang Cai, Ruqin Wang, Baoyi Zhang, Zhuang Zhao, Hongsheng Zhang, Ji Huang

Abstract

Oryza sativa L. (rice) is one of the most important crops in the world, and grain size is a major component determining rice yield. Recent studies have identified a number of grain size regulators, which are involved in phytohormone signaling, G protein signaling, the mitogen-activated protein kinase signaling pathway, the ubiquitin-proteasome pathway or transcriptional regulation. In a previous study, we cloned qGL3/OsPPKL1 encoding a rice protein phosphatase that negatively modulates brassinosteroid (BR) signaling and grain length. Here, to further explore the qGL3-mediated BR signaling network, we performed phosphoproteomic screenings using two pairs of rice materials: the indica rice cultivar 9311 and its near-isogenic line NILqgl3 and the japonica rice cultivar Dongjin and its qGL3 knockout mutant m-qgl3. Together with qGL3-interacting proteins, we constructed the qGL3-mediated network, which reveals the relationships between BR signaling and other critical signaling pathways. Transgenic plants of these network components showed BR-related alterations in plant architecture. From this network, we validated a qGL3-interacting protein, O. sativa VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL1), and demonstrated that qGL3 dephosphorylates OsVIL1 to modulate BR signaling. The qGL3-dependent network uncovered in this study increases our understanding of BR signaling and provides a profound foundation for addressing how BR modulates plant architecture in rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。