E239K mutation abolishes the suppressive effects of lysine-specific demethylase 1 on migration and invasion of MCF7 cells

E239K突变消除赖氨酸特异性去甲基化酶1对MCF7细胞迁移和侵袭的抑制作用

阅读:10
作者:Yu Zhang, Tong Wu, Bo Zhao, Ziyu Liu, Rui Qian, Jing Zhang, Yueru Shi, Youzhong Wan, Zhe Li, Xin Hu

Abstract

Lysine-specific demethylase 1 (LSD1) is an important histone demethylase that mediates epithelial to mesenchymal transition (EMT). The E239K mutation of LSD1 was identified in a luminal breast cancer patient from the COSMIC Breast Cancer dataset. To investigate the functional effects of the E239K mutation of LSD1, a stable LSD1 knockdown MCF7 cell line was generated. Rescue with WT LSD1, but not E239K mutated LSD1, suppressed the invasion and migration of the LSD1 knockdown cells, indicating that the E239K mutation abolished the suppressive effects of LSD1 on the invasion and migration of MCF7 cells. Further analysis showed that the E239K mutation abolished LSD1-mediated invasion and migration of MCF7 cells through downregulation of estrogen receptor α (ERα). Most importantly, the E239K mutation disrupted the interaction between LSD1 and GATA3, which reduced the enrichment of LSD1 at the promoter region of the ERα gene; the reduced enrichment of LSD1 at the promoter region of the ERα gene caused enhanced histone H3K9 methylation, which subsequently suppressed the transcription of the ERα gene. In summary, the E239K mutation abolishes the suppressive function of LSD1 on migration and invasion of breast cancer cells by disrupting the interaction between LSD1 and GATA3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。