Effects of the ABCB1 (1199G > A) Polymorphism on Steroid Sex Hormone-Induced P-Glycoprotein Expression, ATPase Activity, and Hormone Efflux

ABCB1 (1199G > A) 多态性对类固醇性激素诱导的 P-糖蛋白表达、ATPase 活性和激素流出的影响

阅读:5
作者:Rui Peng, Hong Zhang, Ying Zhang, Dan-Yun Wei

Abstract

This study examined how the 1199G > A polymorphism in the ABCB1 gene encoding P-glycoprotein (P-gp) affects the protein's expression, ATPase activity, and ability to pump female steroid sex hormones out of LLC-PK1 cells. The ABCB1 (1199G) or ABCB1 (1199A) allele was transfected into cells, which were incubated for 48 h with various hormone concentrations, then analyzed by Western blotting to examine expression of P-gp protein and by reverse transcription-polymerase chain reaction (RT-PCR) to examine expression of mRNA. Cells were also compared in terms of their transepithelial permeability to steroid sex hormones in the presence and absence of the specific P-gp inhibitor GF120918. P-gp ATPase activity induced by steroid sex hormones was also assayed. Estriol and ethynyl estradiol up-regulated levels of ABCB1 mRNA in a concentration-dependent manner, with ABCB1 (1199A) mRNA showing greater up-regulation than ABCB1 (1199G) mRNA. Estrone, estriol, and ethynyl estradiol were substrates of both types of P-gp in transepithelial permeability assays, and the ABCB1 (1199A) protein showed a significantly higher net efflux ratio for estrone (13.4 vs. 7.4, p < 0.005), estriol (5.6 vs. 3.3, p < 0.05), and ethynyl estradiol (12.7 vs. 5.3, p < 0.005). Induction of P-gp ATPase activity by ethynyl estradiol and progesterone increased with increasing hormone concentration, and the magnitude of stimulation was greater for ABCB1 (1199A) P-gp than for ABCB1 (1199G) P-gp. These results indicate that the ABCB1 (1199G > A) polymorphism influences steroid sex hormone-induced expression and function of P-gp, which may help to explain inter-patient differences in P-gp-mediated chemotherapy resistance in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。