The tetraspanin web revisited by super-resolution microscopy

通过超分辨率显微镜重新审视四跨膜蛋白网

阅读:6
作者:Malou Zuidscherwoude, Fabian Göttfert, Vera Marie E Dunlock, Carl G Figdor, Geert van den Bogaart, Annemiek B van Spriel

Abstract

The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called 'tetraspanin-enriched microdomains (TEMs)' via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。