Protein arginine methyltransferase 3-induced metabolic reprogramming is a vulnerable target of pancreatic cancer

蛋白质精氨酸甲基转移酶 3 诱导的代谢重编程是胰腺癌的脆弱靶点

阅读:5
作者:Ming-Chuan Hsu, Ya-Li Tsai, Chia-Hsien Lin, Mei-Ren Pan, Yan-Shen Shan, Tsung-Yen Cheng, Skye Hung-Chun Cheng, Li-Tzong Chen, Wen-Chun Hung

Background

The biological function of protein arginine methyltransferase 3 (PRMT3) is not well known because very few physiological substrates of this methyltransferase have been identified to date.

Conclusion

Our results suggest that PRMT3 mediates metabolic reprogramming and cellular proliferation through methylating R248 of GAPDH, and double blockade of GAPDH and mitochondrial respiration could be a novel strategy for the treatment of PRMT3-overexpressing pancreatic cancer.

Methods

The clinical significance of PRMT3 in pancreatic cancer was studied by database analysis. The PRMT3 protein level of human pancreatic tumors was detected by immunoblotting and immunohistochemical staining. PRMT3-associated proteins and the methylation sites on the proteins were investigated using mass spectrometry. Seahorse Bioscience analyzed the metabolic reprogramming. Combination index analysis and xenograft animal model were conducted to explore the effects of combination of inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and oxidative phosphorylation on tumor growth.

Results

We found that the expression of PRMT3 is upregulated in pancreatic cancer, and its expression is associated with poor survival. We identified GAPDH as a PRMT3-binding protein and demonstrated that GAPDH is methylated at R248 by PRMT3 in vivo. The methylation of GAPDH by PRMT3 enhanced its catalytic activity while the mutation of R248 abolished the effect. In cells, PRMT3 overexpression triggered metabolic reprogramming and enhanced glycolysis and mitochondrial respiration simultaneously in a GAPDH-dependent manner. PRMT3-overexpressing cancer cells were addicted to GAPDH-mediated metabolism and sensitive to the inhibition of GAPDH and mitochondrial respiration. The combination of inhibitors of GAPDH and oxidative phosphorylation induced a synergistic inhibition on cellular growth in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。