Lung Carcinoma Cells Secrete Exosomal MALAT1 to Inhibit Dendritic Cell Phagocytosis, Inflammatory Response, Costimulatory Molecule Expression and Promote Dendritic Cell Autophagy via AKT/mTOR Pathway

肺癌细胞分泌外泌体MALAT1通过AKT/mTOR通路抑制树突状细胞吞噬、炎症反应、共刺激分子表达并促进树突状细胞自噬

阅读:4
作者:Yanyan Liu, Zhucheng Yin, Ping Lu, Yifei Ma, Bo Luo, Lanxin Xiang, Wangli Zhang, Yu He, Xinjun Liang

Conclusion

Inhibition of MALAT1 expression in LLC-derived exosomes promoted DC function and T cell proliferation and suppressed DC autophagy and T cell differentiation, suggesting that MALAT1 inhibition may be a potential strategy for the clinical treatment of lung cancer.

Methods

C57BL/6 (B6) mice were randomly divided into five groups: control, dendritic cell (DC), DC-NC, DC-siMALAT1, and siMALAT1. Tumor cell proliferation was measured by Ki-67 staining. LLC cells were divided into control, NC, and si-MALAT1 groups, and exosomes secreted by each group were labeled as PEX, PEXN, and PEX-si, respectively. Exosomes and autophagic vacuoles were observed by transmission electron microscopy. MALAT1 expression in LLC, A549, and Beas-2b cells was examined by RT-PCR. The expression of IFN-γ, IL-12, IL-10, and TGF-β was observed by Elisa assay. Flow cytometry was used to observe the phagocytic function of DCs, costimulatory molecule expression, and T cell proliferation and differentiation. The protein expression of p-AKT, AKT, p-mTOR, mTOR, ALIX, TSG101, and CD63 was detected by Western blot.

Objective

To investigate the potential mechanism underlying the effect of lung carcinoma cell-derived exosomes on dendritic cell function. Materials and

Results

Compared with Beas-2b cells, MALAT1 expression was significantly increased in both LLC and A549 cells and in their secreted exosomes, and LLC cells showed the highest expression of MALAT1 (P < 0.05). Tumor cell proliferation and tumor volume were significantly decreased in the siMALAT1 and DC-siMALAT1 groups compared to those in the control group. DC phagocytosis, inflammatory response, costimulatory molecule expression, and T cell proliferation in the siMALAT1 and PEX-si groups were significantly enhanced (P < 0.05), while DC autophagy and T cell differentiation were reduced (P < 0.05). The levels of p-AKT, AKT, p-mTOR, and mTOR in the PEX and PEXN groups were increased compared with those in the control group, while those in the siMALAT1 and PEX-si groups were significantly decreased (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。