Extending residence time and stability of peptides by protected graft copolymer (PGC) excipient: GLP-1 example

通过受保护的接枝共聚物 (PGC) 赋形剂延长肽的停留时间和稳定性:GLP-1 示例

阅读:5
作者:Gerardo M Castillo, Sandra Reichstetter, Elijah M Bolotin

Conclusions

PGC can be an ideal in vivo stabilizing excipient for biologically labile peptides.

Methods

To create a PGC excipient, polylysine was grafted with methoxypolyethyleneglycol and fatty acid at the epsilon amino groups. We performed evaluation of the binding of excipient to GLP-1, the DPP IV sensitivity of GLP-1 formulated with PGC as the excipient, the in vitro bio-activity of excipient-formulated GLP-1, the in vivo pharmacokinetics of excipient-formulated GLP-1, and the efficacy of the excipient-formulated GLP-1 in diabetic rats.

Purpose

To determine whether a Protected Graft Copolymer (PGC) containing fatty acid can be used as a stabilizing excipient for GLP-1 and whether PGC/GLP-1 given once a week can be an effective treatment for diabetes.

Results

We showed reproducible synthesis of PGC excipient, high affinity binding of PGC to GLP-1, slowed protease degradation of excipient-formulated GLP-1, and that excipient-formulated GLP-1 induced calcium influx in INS cells. Excipient-formulated GLP-1 stays in the blood for at least 4 days. When excipient-formulated GLP-1 was given subcutaneously once a week to diabetic ZDF rats, a significant reduction of HbA1c compared to control was observed. The reduction is similar to diabetic ZDF rats given exendin twice a day. Conclusions: PGC can be an ideal in vivo stabilizing excipient for biologically labile peptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。