The eleven-nineteen lysine-rich leukemia gene (ELL2) influences the histone H3 protein modifications accompanying the shift to secretory immunoglobulin heavy chain mRNA production

11-19 个富含赖氨酸的白血病基因 (ELL2) 影响组蛋白 H3 蛋白修饰,伴随分泌性免疫球蛋白重链 mRNA 的产生

阅读:5
作者:Christine Milcarek, Michael Albring, Creityeka Langer, Kyung Soo Park

Abstract

In plasma cells, immunoglobulin heavy chain (IgH) secretory-specific mRNA is made in high abundance as a result of both increased promoter proximal poly(A) site choice and weak splice-site skipping. Ell2, the eleven-nineteen lysine rich leukemia gene, is a transcription elongation factor that is induced ∼6-fold in plasma cells and has been shown to drive secretory-specific mRNA production. Reducing ELL2 by siRNA, which reduced processing to the secretion-specific poly(A) site, also influenced the methylations of histone H3K4 and H3K79 on the IgH gene and impacted positive transcription factor b (pTEFb), Ser-2 carboxyl-terminal phosphorylation, and polyadenylation factor additions to RNA polymerase II. The multiple lineage leukemia gene (MLL) and Dot1L associations with the IgH gene were also impaired in the absence of ELL2. To investigate the link between histone modifications, transcription elongation, and alternative RNA processing in IgH mRNA production, we performed chromatin immunoprecipitation on cultured mouse B and plasma cells bearing the identical IgH γ2a gene. In the plasma cells, as compared with the B cells, the H3K4 and H3K79 methylations extended farther downstream, past the IgH enhancer to the end of the transcribed region. Thus the downstream H3K4 and H3K79 methylation of the IgH associated chromatin in plasma cells is associated with increased polyadenylation and exon skipping, resulting from the actions of ELL2 transcription elongation factor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。