Near-Infrared Spectroscopy with Supervised Machine Learning as a Screening Tool for Neutropenia

监督机器学习近红外光谱法作为中性粒细胞减少症的筛查工具

阅读:5
作者:José Joaquim Raposo-Neto, Eduardo Kowalski-Neto, Wilson Barros Luiz, Estherlita Almeida Fonseca, Anna Karla Costa Logrado Cedro, Maneesh N Singh, Francis L Martin, Paula Frizera Vassallo, Luciene Cristina Gastalho Campos, Valerio Garrone Barauna

Abstract

The use of non-invasive tools in conjunction with artificial intelligence (AI) to detect diseases has the potential to revolutionize healthcare. Near-infrared spectroscopy (NIR) is a technology that can be used to analyze biological samples in a non-invasive manner. This study evaluated the use of NIR spectroscopy in the fingertip to detect neutropenia in solid-tumor oncologic patients. A total of 75 patients were enrolled in the study. Fingertip NIR spectra and complete blood counts were collected from each patient. The NIR spectra were pre-processed using Savitzky-Golay smoothing and outlier detection. The pre-processed data were split into training/validation and test sets using the Kennard-Stone method. A toolbox of supervised machine learning classification algorithms was applied to the training/validation set using a stratified 5-fold cross-validation regimen. The algorithms included linear discriminant analysis (LDA), logistic regression (LR), random forest (RF), multilayer perceptron (MLP), and support vector machines (SVMs). The SVM model performed best in the validation step, with 85% sensitivity, 89% negative predictive value (NPV), and 64% accuracy. The SVM model showed 67% sensitivity, 82% NPV, and 57% accuracy on the test set. These results suggest that NIR spectroscopy in the fingertip, combined with machine learning methods, can be used to detect neutropenia in solid-tumor oncology patients in a non-invasive and timely manner. This approach could help reduce exposure to invasive tests and prevent neutropenic patients from inadvertently undergoing chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。