Reinforcement of Alginate-Gelatin Hydrogels with Bioceramics for Biomedical Applications: A Comparative Study

生物陶瓷增强海藻酸盐-明胶水凝胶在生物医学中的应用:一项比较研究

阅读:8
作者:Alan Avila-Ramirez, Kevin Catzim-Ríos, Carlos Enrique Guerrero-Beltrán, Erick Ramírez-Cedillo, Wendy Ortega-Lara

Abstract

This study states the preparation of novel ink with potential use for bone and cartilage tissue restoration. 3Dprint manufacturing allows customizing prostheses and complex morphologies of any traumatism. The quest for bioinks that increase the restoration rate based on printable polymers is a need. This study is focused on main steps, the synthesis of two bioceramic materials as WO3 and Na2Ti6O13, its integration into a biopolymeric-base matrix of Alginate and Gelatin to support the particles in a complete scaffold to trigger the potential nucleation of crystals of calcium phosphates, and its comparative study with independent systems of formulations with bioceramic particles as Al2O3, TiO2, and ZrO2. FT-IR and SEM studies result in hydroxyapatite's potential nucleation, which can generate bone or cartilage tissue regeneration systems with low or null cytotoxicity. These composites were tested by cell culture techniques to assess their biocompatibility. Moreover, the reinforcement was compared individually by mechanical tests with higher results on synthesized materials Na2Ti6O13 with 35 kPa and WO3 with 63 kPa. Finally, the integration of these composite materials formulated by Alginate/Gelatin and bioceramic has been characterized as functional for further manufacturing with the aid of novel biofabrication techniques such as 3D printing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。