SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza

SmbHLH60 和 SmMYC2 拮抗调节丹参中酚酸和花青素的生物合成

阅读:5
作者:Shucan Liu, Yao Wang, Min Shi, Itay Maoz, Xiankui Gao, Meihong Sun, Tingpan Yuan, Kunlun Li, Wei Zhou, Xinhong Guo, Guoyin Kai

Conclusion

Our results clarified that SmbHLH60 is a negativeregulator on the biosynthesis of phenolic acids and anthocyanins. SmbHLH60 competed with SmMYC2 in an antagonistic manner, providing new insights for the molecular mechanism of MeJA-mediated regulation on the biosynthesis of secondary metabolites in S. miltiorrhiza.

Methods

Hairy root transformation based on CRISPR/Cas9 technique was used to decipher gene function(s). Changes in the content of phenolic acids were evaluated by HPLC. Y1H, EMSA and dual-LUC assays were employed to analyze the molecular mechanism of SmbHLH60 in the regulation on the biosynthesis of phenolic acids and anthocyanins. Y2H, BiFC and pull-down affinity assays were used to corroborate the interaction between SmbHLH60 and SmMYC2.

Results

Being one of the most significantly negatively regulated bHLH genes by MeJA, a new transcription factor SmbHLH60 was discovered and characterized. Over-expression of SmbHLH60 resulted in significant inhibition of phenolic acid and anthocyanin biosynthesis in S. miltiorrhiza by transcriptionally repressing of target genes such as SmTAT1 and SmDFR, whereas CRISPR/Cas9-generated knockout of SmbHLH60 resulted in the opposite effect. In addition, SmbHLH60 and SmMYC2 formed a heterodimer to antagonistically regulate phenolic acid and anthocyanin biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。