Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation

质膜脂质不对称性的丧失可诱导有序结构域(筏)的形成

阅读:10
作者:Shinako Kakuda, Pavana Suresh, Guangtao Li, Erwin London

Abstract

In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ∼37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。