Flagellar hook protein FlgE promotes macrophage activation and atherosclerosis by targeting ATP5B

鞭毛钩蛋白 FlgE 通过靶向 ATP5B 促进巨噬细胞活化和动脉粥样硬化

阅读:6
作者:Yuanyuan Li, Min Zhang, Yanmeng Li, Ying Shen, Xiaoping Wang, Xiaolu Li, Yiqiang Wang, Tao Yu, Jie Lv, Yan Qin

Aims

Pseudomonas aeruginosa (P. aeruginosa) infections are strongly linked to the development of cardiovascular disease and atherosclerosis; however, the underlying mechanisms remain unclear. We previously confirmed that the flagellar hook protein FlgE in P. aeruginosa has immunostimulatory effects. This study investigated the effects and mechanisms of action of FlgE on atherogenesis.

Background and aims

Pseudomonas aeruginosa (P. aeruginosa) infections are strongly linked to the development of cardiovascular disease and atherosclerosis; however, the underlying mechanisms remain unclear. We previously confirmed that the flagellar hook protein FlgE in P. aeruginosa has immunostimulatory effects. This study investigated the effects and mechanisms of action of FlgE on atherogenesis.

Conclusions

FlgE induces macrophage lipid uptake and pro-inflammatory responses mediated by ATP5B/NF-kB/AP-1 signaling, which eventually results in atherosclerosis. These findings support the development of therapeutic strategies for P. aeruginosa infection-induced atherosclerosis.

Methods

ApoE-/- mice were intravenously challenged with FlgE or FlgEM recombinant proteins for eight weeks. A murine model of chronic lung colonization was established using beads containing either mutable- or wild-type bacteria. Aortic sinus sections were stained to assess atherosclerosis progression. THP-1 macrophages exposed to FlgE or FlgEM were evaluated for their effects on lipid uptake and inflammation in vitro. Western blotting and pull-down assays were used to identify the binding proteins and signaling pathways involved, and specific blocking experiments were performed to confirm these effects.

Results

FlgE accelerated atherosclerosis progression by triggering lipid deposition and inflammatory responses in high-fat diet (HFD)-fed ApoE-/- mice. In comparison to infection with wild-type PAO1, infection with PAO1/flgEΔBmF resulted in reduced atherosclerosis. Mechanistic analysis indicated that FlgE exacerbated lipoprotein uptake and foam cell formation by upregulating SR-A1 expression. Moreover, FlgE activated NF-κB and MAPK signaling, which subsequently led to inflammatory responses in THP-1-derived macrophages. Pull-down assays revealed that FlgE directly interacted with ATP5B, whereas blocking ATP5B attenuated FlgE-induced responses in macrophages. Conclusions: FlgE induces macrophage lipid uptake and pro-inflammatory responses mediated by ATP5B/NF-kB/AP-1 signaling, which eventually results in atherosclerosis. These findings support the development of therapeutic strategies for P. aeruginosa infection-induced atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。