Two phenolic antioxidants in Suoyang enhance viability of •OH-damaged mesenchymal stem cells: comparison and mechanistic chemistry

锁阳中的两种酚类抗氧化剂增强•OH 损伤的间充质干细胞活力:比较和机理化学

阅读:7
作者:Yulu Xie, Xican Li, Jieying Xu, Qian Jiang, Hong Xie, Jianfeng He, Dongfeng Chen

Background

Suoyang originates from a psammophyte named Cynomorium songaricum Rupr and has been known as a phenolic-antioxidant-enriched traditional Chinese herbal medicine. The present study attempted to investigate the protective effect of phenolic antioxidants in Suoyang towards •OH-mediated MSCs and then further discusses the chemical mechanisms.

Conclusion

As two reference antioxidants in Suoyang, epicatechin and luteolin-7-O-β-D-glucoside can enhance the viability of •OH-damaged MSCs. Such a beneficial effect may be from their antioxidant effects, including direct-antioxidant and indirect-antioxidant (i.e., Fe2+-binding) processes. In the direct-antioxidant process, proton (H+), one electron (e), or even hydrogen-atom (•H) transfer may occur to fulfill radical-scavenging (especially •OH-scavenging); in this aspect, epicatechin is superior to luteolin-7-O-β-D-glucoside due to the presence of more phenolic -OHs. The additional -OHs can also be responsible for the better cytoprotective effect. In terms of indirect-antioxidant potential, however, epicatechin is inferior to luteolin-7-O-β-D-glucoside due to the absence of a hydroxyl-keto moiety. These findings will provide new information about medicinal psammophytes for MSC transplantation.

Methods

The lyophilized aqueous extract of Suoyang (LAS) was prepared and characterized using HPLC. Then, two phenolic antioxidant references, epicatechin and luteolin-7-O-β-D-glucoside, along with LAS, were investigated for their effects on the viability of •OH-treated MSCs using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The comparison and mechanistic chemistry of epicatechin and luteolin-7-O-β-D-glucoside were further explored using various antioxidant assays, including PTIO•-scavenging, FRAP (ferric ion reducing antioxidant power), ABTS+•-scavenging, and DPPH•-scavenging. Their Fe2+-binding capacities were also compared using ultraviolet (UV) spectra.

Results

The HPLC analysis indicated that there are 8 phenolic antioxidants in LAS, including epicatechin, luteolin-7-O-β-D-glucoside, gallic acid, protocatechuic acid, catechin, isoquercitrin, phlorizin, and naringenin. The MTT assay revealed that epicatechin could more effectively increase the survival of •OH-treated MSCs than luteolin-7-O-β-D-glucoside. Similarly, epicatechin exhibited higher antioxidant abilities than luteolin-7-O-β-D-glucoside in the DPPH•-scavenging, ABTS+•-scavenging, FRAP, and PTIO•-scavenging assays. In the Fe2+-binding assay, luteolin-7-O-β-D-glucoside gave a stronger UV peak at 600 nm, with ε = 2.62 × 106 M-1 cm-1, while epicatechin produced two peaks at 450 nm (ε = 8.47 × 105 M-1 cm-1) and 750 nm (ε = 9.68 × 105 M-1 cm-1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。