Fufang Luohanguo Qingfei granules reduces influenza virus susceptibility via MAVS-dependent type I interferon antiviral signaling

复方罗汉果清肺颗粒通过MAVS依赖的I型干扰素抗病毒信号降低流感病毒易感性

阅读:7
作者:Yu-Hui Lu, Min Wang, Jin-Quan Lin, Mu-Yang Wang, Li-Ying Zhou, Song-Hua He, Yu-Ting Yi, Xia Wei, Qiu-Ju Huang, Zhi-Heng Su, Jie Yang, Hong-Wei Guo, Rong-Rong He, Zhuo Luo

Aim of the study

This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. Materials and

Conclusion

These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-β antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.

Methods

In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively.

Results

LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-β transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。