SCARA5 induced ferroptosis to effect ESCC proliferation and metastasis by combining with Ferritin light chain

SCARA5通过与铁蛋白轻链结合诱导铁死亡影响ESCC增殖和转移

阅读:6
作者:Yanqun Liu, Rong Xiong, Ting Xiao, Li Xiong, Jialin Wu, Junfeng Li, Gang Feng, Guiqin Song, Kang Liu

Background

Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal cancers worldwide accompany with an extremely poor prognosis. Therefore, this study aims to screen for new molecules affecting ESCC and explore their mechanisms of action to provide ideas for targeted therapies for ESCC.

Conclusion

Collectively, our findings demonstrated that SCARA5 suppressed the proliferation and metastasis of ESCC by triggering ferroptosis through combining with ferritin light chain.

Methods

Firstly, we screened out the membrane protein SCARA5 by high-throughput sequencing of the ESCC patient tissues, and RT-qPCR and WB were used to verify the differential expression of SCARA5 in esophageal cell lines, and IHC analyzed the expression localization of SCARA5 in ESCC tissue. Then, flow cytometry, wound healing assay, Transwell assay and CCK-8 assay were used to explore the effects of SCARA5 on cell cycle, migration and invasion as well as cell proliferation activity of esophageal squamous carcinoma cells. Meanwhile, transmission electron microscopy was used to detect changes in cellular mitochondrial morphology, and flow cytometry were used to detect changes in intracellular reactive oxygen metabolism, and immunofluorescence and flow cytometry were used to detect changes in intracellular Fe2+. Mechanistically, co-immunoprecipitation was used to detect whether SCARA5 binds to ferritin light chain, and ferroptosis-related protein expression was detected by WB. Finally, the tumor xenograft model was applied to validation the role of SCARA5 tumor growth inhibition in vivo.

Results

We found that SCARA5 was aberrantly decreased in ESCC tissues and cell lines. Furthermore, we confirmed that SCARA5 suppressed the cell cycle, metastasis and invasion of ESCC cells. Meanwhile, we also found that overexpression of SCARA5 caused changes in mitochondrial morphology, accumulation of intracellular reactive oxygen species and increased intracellular Fe2+ in ESCC cells, which induced ferroptosis in ESCC cells. Mechanically, we validated that SCARA5 combined with ferritin light chain and increased intracellular Fe2+. As well as, overexpression SCARA5 induced ferroptosis by increasing ferritin light chain in nude mice subcutaneous tumors and inhibited the growth of nude mice subcutaneous tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。