TGFβ1 as a Predictive Biomarker for Collateral Formation Within Ischemic Moyamoya Disease

TGFβ1 作为缺血性烟雾病侧支形成的预测生物标志物

阅读:4
作者:Yuanbing Chen, Miao Tang, Hui Li, Hongwei Liu, Junyu Wang, Jun Huang

Conclusion

Our findings suggest that TGFβ1 plays a vital role in promoting collateral formation by upregulating VEGF expression in ischemic MMD.

Methods

The transcriptome profile downloaded from Gene Expression Omnibus (GEO) was used to analyze the differential expression of genes between the ischemic MMD and the control groups. We prospectively recruited 23 consecutive patients with ischemic MMD that was diagnosed via digital subtraction angiography (DSA). Nine patients with intracranial aneurysms and four healthy people served as controls. The collaterals from the external carotid artery were examined using DSA. We evaluated whether the collateral formation was associated with TGFβ1 in patients with ischemic MMD. Western blot, RT-qPCR, ELISA, and tube formation assay were used to explore the relationship between TGFβ1 and angiogenesis, as well as the potential mechanisms.

Objective

Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease characterized by progressive steno-occlusion within the terminal segment of the internal carotid artery. However, good collaterals from an external carotid artery are essential to compensate for the ischemia in moyamoya disease. This study aimed to investigate the transforming growth factor-beta 1 (TGFβ1) in plasma as a potential biomarker for predicting collateral formation in ischemic MMD.

Results

The mRNA levels of TGFβ1 were upregulated in the patients with ischemic MMD. The plasma TGFβ1 levels were higher in the patients with ischemic MMD than in the aneurysm and healthy patients (p < 0.05). The collateral formation group has higher levels of serum TGFβ1 than the non-collateral formation group (p < 0.05). The levels of vascular endothelial growth factor (VEGF) are positively correlated with TGFβ1 levels in the plasma (R 2 = 0.6115; p < 0.0001). TGFβ1 regulates VEGF expression via the activation of the TGFβ pathway within HUVEC cells, as well as TGFβ1 stimulating HUVEC cells to secrete VEGF into the cell culture media. An in vitro assay revealed that TGFβ1 promotes angiogenesis within the endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。