A Quantitative Proteomics Approach to Gain Insight into NRF2-KEAP1 Skeletal Muscle System and Its Cysteine Redox Regulation

采用定量蛋白质组学方法深入了解 NRF2-KEAP1 骨骼肌系统及其半胱氨酸氧化还原调节

阅读:5
作者:Rafay Abu, Li Yu, Ashok Kumar, Lie Gao, Vikas Kumar

Abstract

Mammalian skeletal muscle (SkM) tissue engages the Nrf2-Keap1-dependent antioxidant defense mechanism to respond adaptively to stress. Redox homeostasis mediated by the reversible modification of selective cysteines is the prevalent mode of regulation. The protein targets of SkM redox regulation are largely unknown. We previously reported the proteomic profiles of soleus (Sol) and extensor digitorum longus (EDL) with Nrf2 or Keap1 gene deletion, using SkM-specific Nrf2 or Keap1 knockout models; iMS-Nrf2flox/flox; and iMS-Keap1flox/flox. Here, we employed these two animal models to understand the global expression profile of red tibialis anterior (RTA) using a label free approach and its redox proteomics using iodoacetyl tandem mass tag (iodoTMTTM)-labeled cysteine quantitation. We quantified 298 proteins that were significantly altered globally in the RTA with Nrf2 deficiency but only 21 proteins in the Keap1 KO samples. These proteins are involved in four intracellular signaling pathways: sirtuin signaling, Nrf2 mediated oxidative stress response, oxidative phosphorylation, and mitochondrion dysfunction. Moreover, we identified and quantified the cysteine redox peptides of 34 proteins, which are associated with mitochondrial oxidative phosphorylation, energy metabolism, and extracellular matrix. Our findings suggest that Nrf2-deficient RTA is implicated in metabolic myopathy, mitochondrial disorders, and motor dysfunction, possibly due to an enhanced oxidative modification of the structure and functional proteins in skeletal myocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。