Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice

骨桥蛋白通过调节接受博来霉素治疗的小鼠的 IL-17/IFN-γ 分泌 T 细胞比率来增强肺部炎症和纤维化

阅读:7
作者:Keunhee Oh, Myung Won Seo, Young Whan Kim, Dong-Sup Lee

Abstract

Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPN-deficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of CD4(+) αβ T cells and IL-17-producing γδ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of CD4(+) αβ T cells and the percentage of IFN-γ-producing γδ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in CD4(+) T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-γ T cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。