Enantioselective inhibition of d-serine transport by (S)-ketamine

(S)-氯胺酮对 d-丝氨酸转运的对映选择性抑制

阅读:6
作者:Nagendra S Singh, Michel Bernier, Simonetta Camandola, Mohammed A Khadeer, Ruin Moaddel, Mark P Mattson, Irving W Wainer

Background and purpose

Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The

Purpose

Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The

Results

(S)-Ketamine produced a concentration-dependent increase in intracellular d-serine and reduced extracellular d-serine accumulation. In contrast, (R)-ketamine decreased both intracellular and extracellular d-serine levels. The ASCT2 inhibitor, benzyl-d-serine (BDS), and ASCT2 gene knockdown mimicked the action of (S)-ketamine on d-serine in PC-12 cells, while the Asc-1 agonist d-isoleucine reduced intracellular d-serine and increased extracellular d-serine accumulation. This response to d-isoleucine was not affected by BDS or (S)-ketamine. Primary cultures of rat neuronal cells expressed ASCT2 and were responsive to (S)-ketamine and BDS. (S)- and (R)-ketamine increased the expression of monomeric serine racemase in all the cells studied, with (S)-ketamine having the greatest effect. Conclusions and implications: (S)-Ketamine decreased cellular export of d-serine via selective inhibition of ASCT2, and this could represent a possible source of dissociative effects observed with (R,S)-ketamine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。