Acetaminophen Modulates the Expression of Steroidogenesis-Associated Genes and Estradiol Levels in Human Placental JEG-3 Cells

对乙酰氨基酚调节人胎盘 JEG-3 细胞中类固醇生成相关基因的表达和雌二醇水平

阅读:5
作者:Kezia A Addo, Niharika Palakodety, Rebecca C Fry

Abstract

Acetaminophen is the only medication recommended for pain and fever management during pregnancy. However, studies have reported an association between in utero acetaminophen and neurocognitive disorders later in life. Additionally, acetaminophen has been shown to have endocrine disrupting properties altering hormones critical for normal fetal development. As the placenta is an endocrine organ that produces hormones for fetal development, any attempts to elucidate the mechanism underlying in utero acetaminophen and birth outcomes must also focus on the placenta. The present study set out to examine the effect of acetaminophen on mRNA expression, protein expression, and hormone synthesis in placental JEG-3 cells. The analysis focused on genes involved in steroidogenesis and acetaminophen metabolism as well those with known roles as nuclear receptors and transporters. The results highlight that at high concentrations, acetaminophen reduced the gene expression of aromatase (CYP19A1) and type 1 3β-hydroxysteroid dehydrogenase (HSD3B1), and increased the expression of 17β-hydroxysteroid dehydrogenase (HSD17B1). Additionally, acetaminophen at high concentrations also reduced the protein expression of aromatase (CYP19A1). These effects were accompanied by a significant dose-dependent decrease in estradiol secretion. Estradiol plays an important role in the development of reproductive organs and the brain of the developing fetus. This study highlights the potential for acetaminophen to interfere with hormone regulation during pregnancy and underscores the need for additional studies aimed at understanding the endocrine disruption activity of acetaminophen during fetal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。