Canonical NF-κB signaling pathway and GRO-α/CXCR2 axis are activated in unruptured intracranial aneurysm patients

未破裂颅内动脉瘤患者中经典 NF-κB 信号通路和 GRO-α/CXCR2 轴被激活

阅读:6
作者:Joanna Kamińska, Marzena Tylicka, Violetta Dymicka-Piekarska, Zenon Mariak, Joanna Matowicka-Karna, Olga Martyna Koper-Lenkiewicz

Abstract

Activation of the nuclear factor kappa-B (NF-κB) stimulates the production of pro-inflammatory molecules involved in the formation of intracranial aneurysms (IA). The study aimed to assess the NF-κB p65 subunit and the GRO-α chemokine and its receptor CXCR2 concentrations in unruptured intracranial aneurysm patients (UIA, n = 25) compared to individuals without vascular changes in the brain (n = 10). It was also analyzed whether tested proteins are related to the size and number of aneurysms. Cerebrospinal fluid (CSF) and serum protein levels were measured using the ELISA method. Median CSF and serum NF-κB p65 concentrations were significantly lower, while median CSF GRO-α and CXCR2 concentrations were significantly higher in UIA patients compared to the control group. CSF and serum NF-κB p65 concentrations negatively correlated with the number of aneurysms. In UIA patients the median GRO-α concentration was two-fold and CXCR2 almost four-fold higher in CSF compared to the serum value. CSF GRO-α concentration positively correlated with the size of aneurysms.Significantly decreased CSF NF-κB p65 and significantly increased CSF GRO-α and its CXCR2 receptor concentrations in UIA patients compared to the control group may altogether suggest that the canonical NF-κB signaling pathway is activated and its target pro-inflammatory genes are highly expressed in UIA patients. However, to unequivocally assess the involvement of the classical NF-κB pathway with the participation of the NF-κB p65 subunit and the GRO-α/CXCR2 axis in the formation of IA, further in vivo model studies are needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。