Divergent membrane properties of mouse cochlear glial cells around hearing onset

小鼠听觉开始时耳蜗神经胶质细胞的不同膜特性

阅读:6
作者:Katie E Smith, Phoebe Murphy, Daniel J Jagger

Abstract

Spiral ganglion neurons (SGNs) are the primary afferent neurons of the auditory system, and together with their attendant glia, form the auditory nerve. Within the cochlea, satellite glial cells (SGCs) encapsulate the cell body of SGNs, whereas Schwann cells (SCs) wrap their peripherally- and centrally-directed neurites. Despite their likely importance in auditory nerve function and homeostasis, the physiological properties of auditory glial cells have evaded description. Here, we characterized the voltage-activated membrane currents of glial cells from the mouse cochlea. We identified a prominent weak inwardly rectifying current in SGCs within cochlear slice preparations (postnatal day P5-P6), which was also present in presumptive SGCs within dissociated cultures prepared from the cochleae of hearing mice (P14-P15). Pharmacological block by Ba2+ and desipramine suggested that channels belonging to the Kir4 family mediated the weak inwardly rectifying current, and post hoc immunofluorescence implicated the involvement of Kir4.1 subunits. Additional electrophysiological profiles were identified for glial cells within dissociated cultures, suggesting that glial subtypes may have specific membrane properties to support distinct physiological roles. Immunofluorescence using fixed cochlear sections revealed that although Kir4.1 is restricted to SGCs after the onset of hearing, these channels are more widely distributed within the glial population earlier in postnatal development (i.e., within both SGCs and SCs). The decrease in Kir4.1 immunofluorescence during SC maturation was coincident with a reduction of Sox2 expression and advancing neurite myelination. The data suggest a diversification of glial properties occurs in preparation for sound-driven activity in the auditory nerve.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。