Synthesis, anti-bacterial evaluation, DFT study and molecular docking as a potential 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 inhibitors of a novel Schiff bases

一种新型席夫碱类 SARS-CoV-2 抑制剂的潜在 3-胰凝乳蛋白酶样蛋白酶 (3CLpro) 的合成、抗菌评价、DFT 研究及分子对接

阅读:8
作者:Ahmed S M Al-Janabi, Amin O Elzupir, Tarek A Yousef

Abstract

New Schiff bases {N'-(phenyl(pyridin-2-yl)methylene) isonicotinohydrazide (L1H), N1 -(naphthalen-1-yl)-N2 -(phenyl(pyridin-2-yl) methylidene) ethane-1,2-diamine (L2H), N-(6-chlorobenzo[d]thiazol-2-yl)-1-phenyl-1-(pyridin-2-yl) methanimine (L3H)}were synthesized by reaction of 2-benzoylpyridine with different amines (2-amino-6-chlorobenzothiazole, isonicotinohydrazide and N 1-(naphthalen-1-yl)ethane-1,2-diamine) and characterized by 1H-NMR, 13C-NMR, IR mass spectroscopy and elemental analysis. The compounds were assayed by the disc diffusion method for anti-bacterial against five pathogenic bacteria species (Staphylococcus aureus, Micrococcus luteus, Staphylococcus pyogenes, Bacillus subtilis, and E. coli). All prepared Schiff bases showed good activity compared to positive control (streptomycin), Moreover the L3H showed the highest activity against S. aureus, and M. luteus than the other compounds and streptomycin. In additional molecular docking studies with 3-chymotrypsin-like protease (3CLpro), the essential enzyme for SARS-CoV-2 proliferation. The rest of compounds have shown promising results as 3CLpro inhibitors interacting with the active sites of the enzymes. Finally, DFT 's estimated electrostatic molecular potential results were used to illustrate the molecular docking findings. The DFT calculations showed that L3H has the highest dipole moment and electrophilicity index. Interestingly, L2H of the largest energy gap ∆E = 2.49 eV, there are several hydrophilic interactions that could facilitate the binding with the receptors. All of these parameters could be shared to significantly affect the protein sites of binding affinity with different extent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。