Faulty initiation of proteoglycan synthesis causes cardiac and joint defects

蛋白聚糖合成启动错误导致心脏和关节缺陷

阅读:6
作者:Sevjidmaa Baasanjav, Lihadh Al-Gazali, Taishi Hashiguchi, Shuji Mizumoto, Bjoern Fischer, Denise Horn, Dominik Seelow, Bassam R Ali, Samir A A Aziz, Ruth Langer, Ahmed A H Saleh, Christian Becker, Gudrun Nürnberg, Vincent Cantagrel, Joseph G Gleeson, Delphine Gomez, Jean-Baptiste Michel, Sigmar Stri

Abstract

Proteoglycans are a major component of extracellular matrix and contribute to normal embryonic and postnatal development by ensuring tissue stability and signaling functions. We studied five patients with recessive joint dislocations and congenital heart defects, including bicuspid aortic valve (BAV) and aortic root dilatation. We identified linkage to chromosome 11 and detected a mutation (c.830G>A, p.Arg277Gln) in B3GAT3, the gene coding for glucuronosyltransferase-I (GlcAT-I). The enzyme catalyzes an initial step in the synthesis of glycosaminoglycan side chains of proteoglycans. Patients' cells as well as recombinant mutant protein showed reduced glucuronyltransferase activity. Patient fibroblasts demonstrated decreased levels of dermatan sulfate, chondroitin sulfate, and heparan sulfate proteoglycans, indicating that the defect in linker synthesis affected all three lines of O-glycanated proteoglycans. Further studies demonstrated that GlcAT-I resides in the cis and cis-medial Golgi apparatus and is expressed in the affected tissues, i.e., heart, aorta, and bone. The study shows that reduced GlcAT-I activity impairs skeletal as well as heart development and results in variable combinations of heart malformations, including mitral valve prolapse, ventricular septal defect, and bicuspid aortic valve. The described family constitutes a syndrome characterized by heart defects and joint dislocations resulting from altered initiation of proteoglycan synthesis (Larsen-like syndrome, B3GAT3 type).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。