Decreased autophagosome biogenesis, reduced NRF2, and enhanced ferroptotic cell death are underlying molecular mechanisms of non-alcoholic fatty liver disease

自噬体生物合成减少、NRF2 减少和铁凋亡细胞死亡增强是非酒精性脂肪肝的潜在分子机制

阅读:5
作者:Pengfei Liu, Annadurai Anandhan, Jinjing Chen, Aryatara Shakya, Matthew Dodson, Aikseng Ooi, Eli Chapman, Eileen White, Joe Gn Garcia, Donna D Zhang

Aims

Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD. Approach and

Approach and results

Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation. Mechanistically, HFD suppressed autophagosome biogenesis through AMPK- and AKT-mediated mTOR activation and decreased ATG7, resulting in KEAP1 stabilization and decreased NRF2 levels in mouse liver. Furthermore, ATG7 is required for HFD-induced NRF2 downregulation, as ATG7 deletion in Cre-inducible ATG7 knockout mice decreased NRF2 levels and enhanced ferroptosis, which was not further exacerbated by HFD. This finding was recapitulated in mouse hepatocytes, which showed a similar phenotype upon treatment with saturated fatty acids (SFAs) but not monounsaturated fatty acids (MUFAs). Finally, NRF2 activation blocked fatty acid (FA)-mediated NRF2 downregulation, lipid peroxidation, and ferroptosis. Importantly, the HFD-induced alterations were also observed in human fatty liver tissue samples. Conclusions: HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.

Background and aims

Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD. Approach and

Conclusions

HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.

Results

Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation. Mechanistically, HFD suppressed autophagosome biogenesis through AMPK- and AKT-mediated mTOR activation and decreased ATG7, resulting in KEAP1 stabilization and decreased NRF2 levels in mouse liver. Furthermore, ATG7 is required for HFD-induced NRF2 downregulation, as ATG7 deletion in Cre-inducible ATG7 knockout mice decreased NRF2 levels and enhanced ferroptosis, which was not further exacerbated by HFD. This finding was recapitulated in mouse hepatocytes, which showed a similar phenotype upon treatment with saturated fatty acids (SFAs) but not monounsaturated fatty acids (MUFAs). Finally, NRF2 activation blocked fatty acid (FA)-mediated NRF2 downregulation, lipid peroxidation, and ferroptosis. Importantly, the HFD-induced alterations were also observed in human fatty liver tissue samples. Conclusions: HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。