Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples

快速浓缩和分子富集方法用于饮用水样品中大肠杆菌和志贺氏菌的灵敏检测

阅读:4
作者:Andrée F Maheux, Luc Bissonnette, Maurice Boissinot, Jean-Luc T Bernier, Vicky Huppé, François J Picard, Éve Bérubé, Michel G Bergeron

Abstract

In this work, we used a rapid, simple, and efficient concentration-and-recovery procedure combined with a DNA enrichment method (dubbed CRENAME [concentration and recovery of microbial particles, extraction of nucleic acids, and molecular enrichment]), that we coupled to an Escherichia coli/Shigella-specific real-time PCR (rtPCR) assay targeting the tuf gene, to sensitively detect E. coli/Shigella in water. This integrated method was compared to U.S. Environmental Protection Agency (EPA) culture-based Method 1604 on MI agar in terms of analytical specificity, ubiquity, detection limit, and rapidity. None of the 179 non-E. coli/Shigella strains tested was detected by both methods, with the exception of Escherichia fergusonii, which was detected by the CRENAME procedure combined with the E. coli/Shigella-specific rtPCR assay (CRENAME + E. coli rtPCR). DNA from all 90 E. coli/Shigella strains tested was amplified by the CRENAME + E. coli rtPCR, whereas the MI agar method had limited ubiquity and detected only 65 (72.2%) of the 90 strains tested. In less than 5 h, the CRENAME + E. coli rtPCR method detected 1.8 E. coli/Shigella CFU whereas the MI agar method detected 1.2 CFU/100 ml of water in 24 h (95% confidence). Consequently, the CRENAME method provides an easy and efficient approach to detect as little as one Gram-negative E. coli/Shigella cell present in a 100-ml potable water sample. Coupled with an E. coli/Shigella-specific rtPCR assay, the entire molecular procedure is comparable to U.S. EPA Method 1604 on MI agar in terms of analytical specificity and detection limit but provides significant advantages in terms of speed and ubiquity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。