Diffusion-weighted MRI of total hip arthroplasty for classification of synovial reactions: A pilot study

全髋关节置换术中扩散加权磁共振成像对滑膜反应进行分类:一项初步研究

阅读:7
作者:Madeleine A Gao, Ek T Tan, John P Neri, Qian Li, Alissa J Burge, Hollis G Potter, Kevin M Koch, Matthew F Koff

Background

Conventional quantitative diffusion-weighted imaging (DWI) is sensitive to changes in tissue microstructure, but its application to evaluating patients with orthopaedic hardware has generally been limited due to metallic susceptibility artifacts. The apparent diffusion coefficient (ADC) and T2-values from a multi-spectral imaging (MSI) DWI combined with 2D multi-spectral imaging with a 2D periodically rotated overlapping parallel lines with enhanced reconstruction (2D-MSI PROPELLER DWI) based sequence and a MAVRIC based T2 mapping sequence, respectively, may mitigate the artifact and provide additional quantitative information on synovial reactions in individuals with total hip arthroplasty (THA). The

Conclusions

2D-MSI PROPELLER DWI and MAVRIC-T2 generate quantitative images of periprosthetic tissues within clinically feasible scan times. The combination of derived ADC and T2-values with area of synovial reaction may aid in differentiating normal from abnormal synovial reactions between types of synovial reactions in patients with THA.

Methods

Coronal morphologic MRIs from THA patients underwent evaluation of the synovium and were assigned a synovial classification of 'normal', or 'grouped abnormal' (consisting of sub-groups 'infection', 'polymeric', 'metallosis', 'adverse local tissue reaction' [ALTR], or 'non-specific') and type of synovial reaction present (fluid-like, solid-like, or mixed). Regions of interest (ROIs) were placed in synovial reactions for measurement of ADC and T2-values, obtained from the 2D-MSI PROPELLER DWI and T2-MAVRIC sequences, respectively. A one-way analysis of variance (ANOVA) and Kruskal-Wallis rank sum tests were used to compare the differences in ADC and T2-values across the different synovial reaction classifications. A Kruskal-Wallis test was used to compare the ROI areas for the ADC and T2-values. A principal component analysis (PCA) was performed to evaluate the possible effects of ADC values, size of the ADC ROI, T2-values, and size of the T2 ROI with respect to synovial reaction classification.

Results

Differences of ADC and T2 among the individual synovial reactions were not found. A difference of ADC between 'normal' and 'grouped abnormal' synovial reactions was also not detected even as the ADC area of 'grouped abnormal' synovial reactions were significantly larger (p = 0.02). The 'grouped abnormal' synovial reactions had significantly shorter T2-values than 'normal' synovial reactions (p = 0.02), and that the T2 area of 'grouped abnormal' synovial reactions were significantly larger (p = 0.01). A larger ROI area on the T2-maps was observed in the mixed synovial reaction type as compared to the fluid-like reaction type area (p = 0.01). Heterogeneity was noted in calculated ADC and T2 maps. PCA analysis revealed obvious clustering by the 'normal' and 'grouped abnormal' classifications. Conclusions: 2D-MSI PROPELLER DWI and MAVRIC-T2 generate quantitative images of periprosthetic tissues within clinically feasible scan times. The combination of derived ADC and T2-values with area of synovial reaction may aid in differentiating normal from abnormal synovial reactions between types of synovial reactions in patients with THA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。