Increased excitatory amino acid transport into murine prion protein knockout astrocytes cultured in vitro

体外培养的小鼠朊病毒蛋白敲除星形胶质细胞中兴奋性氨基酸转运增加

阅读:4
作者:Melissa S Pathmajeyan, Sarjubhai A Patel, James A Carroll, Todd Seib, James F Striebel, Richard J Bridges, Bruce Chesebro

Abstract

Prion protein (PrP) is expressed on a wide variety of cells and plays an important role in the pathogenesis of transmissible spongiform encephalopathies. However, its normal function remains unclear. Mice that do not express PrP exhibit deficits in spatial memory and abnormalities in excitatory neurotransmission suggestive that PrP may function in the glutamatergic synapse. Here, we show that transport of D-aspartate, a nonmetabolized L-glutamate analog, through excitatory amino acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrPKO) mice than in astrocytes from C57BL/10SnJ wild-type (WT) mice. Experiments using EAAT subtype-specific inhibitors demonstrated that in both WT and PrPKO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, PrPKO astrocytes were more effective than WT astrocytes at alleviating L-glutamate-mediated excitotoxic damage in both WT and PrPKO neuronal cultures. Thus, in this in vitro model, PrPKO astrocytes exerted a functional influence on neuronal survival and may therefore influence regulation of glutamatergic neurotransmission in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。