Dielectrophoretic trapping and impedance detection of Escherichia coli, Vibrio cholera, and Enterococci bacteria

大肠杆菌、霍乱弧菌和肠球菌的介电泳捕获和阻抗检测

阅读:5
作者:Tian Fook Kong, Xinhui Shen, Marcos, Chun Yang, Imran Halimi Ibrahim

Abstract

In this work, a dielectrophoretic impedance measurement (DEPIM) lab-on-chip device for bacteria trapping and detection of Escherichia coli, Vibrio cholerae, and Enterococcus is presented. Through the integration of SU-8 negative photoresist as a microchannel and the precise alignment of the SU-8 microchannel with the on-chip gold interdigitated microelectrodes, bacteria trapping efficiencies of up to 97.4%, 97.7%, and 37.7% were achieved for E. coli, V. cholerae, and Enterococcus, respectively. The DEPIM device enables a high detection sensitivity, which requires only a total number of 69 ± 33 E. coli cells, 9 ± 2 Vibrio cholera cells, and 36 ± 13 Enterococcus cells to observe a discernible change in system impedance for detection. Nonetheless, the corrected limit of detection for Enterococcus is 95 ± 34 after taking into consideration the lower trapping efficiency. In addition, a theoretical model is developed to allow for the direct estimation of the number of bacteria through a linear relationship with the change in the reciprocal of the overall system absolute impedance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。