Elaboration of Thermally Performing Polyurethane Foams, Based on Biopolyols, with Thermal Insulating Applications

基于生物多元醇的耐热聚氨酯泡沫的制备及其隔热应用

阅读:5
作者:Pedro Luis De Hoyos-Martinez, Sebastian Barriga Mendez, Eriz Corro Martinez, De-Yi Wang, Jalel Labidi

Abstract

In this work, biobased rigid polyurethane foams (PUFs) were developed with the aim of achieving thermal and fireproofing properties that can compete with those of the commercially available products. First, the synthesis of a biopolyol from a wood residue by means of a scaled-up process with suitable yield and reaction conditions was carried out. This biopolyol was able to substitute completely the synthetic polyols that are typically employed within a polyurethane formulation. Different formulations were developed to assess the effect of two flame retardants, namely, polyhedral oligomeric silsesquioxane (POSS) and amino polyphosphate (APP), in terms of their thermal properties and degradation and their fireproofing mechanism. The structure and the thermal degradation of the different formulations was evaluated via Fourier Transformed Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Likewise, the performance of the different PUF formulations was studied and compared to that of an industrial PUF. From these results, it can be highlighted that the addition of the flame retardants into the formulation showed an improvement in the results of the UL-94 vertical burning test and the LOI. Moreover, the fireproofing performance of the biobased formulations was comparable to that of the industrial one. In addition to that, it can be remarked that the biobased formulations displayed an excellent performance as thermal insulators (0.02371-0.02149 W·m-1·K-1), which was even slightly higher than that of the industrial one.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。