Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration

酶介导一锅法合成多酚交联水凝胶用于皮肤再生

阅读:9
作者:B S Kim, S-H Kim, K Kim, Y-H An, K-H So, B-G Kim, N S Hwang

Abstract

Polyphenols can trigger immunity that activates intracellular anti-inflammatory signaling and prevents external infections. In this study, we report the fabrication of chitosan-based hydrogels with epigallocatechin gallate (EGCG) using enzyme-mediated one-pot synthesis. The tyrosinase-mediated oxidative reaction of the phenolic rings of EGCG with the primary amines on chitosan results in stable EGCG-chitosan hydrogels. The EGCG concentrations contributed to the cross-linking density and physical properties of EGCG-chitosan hydrogels. Furthermore, EGCG-chitosan hydrogels maintained intrinsic properties such as antibacterial and antioxidant effects. When endotoxin-activated RAW 264.7 macrophage cells were cultured with EGCG-chitosan hydrogels, the hydrogels reduced the inflammatory response of the RAW 264.7 cells. Furthermore, subcutaneous implantation of EGCG-chitosan hydrogels reduced endogenous macrophage and monocyte activation. When the EGCG-chitosan hydrogels were applied to a full-skin defect wound, they facilitated skin regeneration. Our study demonstrates that the one-pot synthesized EGCG-chitosan hydrogels can be applied in broad tissue regeneration applications that require immune modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。