Seeding specificity and ultrastructural characteristics of infectious recombinant prions

感染性重组朊病毒的播种特异性和超微结构特征

阅读:8
作者:Justin R Piro, Fei Wang, Daniel J Walsh, Judy R Rees, Jiyan Ma, Surachai Supattapone

Abstract

Infectious mouse prions can be produced from a mixture of bacterially expressed recombinant prion protein (recPrP), palmitoyloleoylphosphatidylglycerol (POPG), and RNA [Wang, F.; et al. (2010) Science 327, 1132]. In contrast, amyloid fibers produced from pure recPrP without POPG or RNA (recPrP fibers) fail to infect wild type mice [Colby, D.W.; et al. (2010) PLoS Pathog. 387, e1000736]. We compared the seeding specificity and ultrastructural features of infectious recombinant prions (recPrP(Sc)) with those of recPrP fibers. Our results indicate that PrP fibers are not able to induce the formation of PrP(Sc) molecules from wild type mouse brain homogenate substrate in serial protein misfolding cyclic amplification (sPMCA) reactions. Conversely, recPrP(Sc) molecules did not accelerate the formation of amyloid in vitro, under conditions that produce recPrP fibers spontaneously. Ultrastructurally, recombinant prions appear to be small spherical aggregates rather than elongated fibers, as determined by atomic force and electron microscopy. Taken together, our results show that recPrP(Sc) molecules and PrP fibers have different ultrastructural features and seeding specificities, suggesting that prion infectivity may be propagated by a specific and unique assembly pathway facilitated by cofactors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。