Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System

构建神经毒素功能化外泌体以实现靶向递送至周围神经系统

阅读:2
作者:Mena Asha Krishnan ,Olawale A Alimi ,Tianshu Pan ,Mitchell Kuss ,Zeljka Korade ,Guoku Hu ,Bo Liu ,Bin Duan

Abstract

The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies. Keywords: click chemistry; peripheral nerve injury; red blood cells; target delivery; tetanus toxin-C fragment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。