Discovery of porcine maternal factors related to nuclear reprogramming and early embryo development by proteomic analysis

通过蛋白质组学分析发现与核重编程和早期胚胎发育相关的猪母体因素

阅读:5
作者:Qi Zhao, Zheng Guo, Shanhua Piao, Chunsheng Wang, Tiezhu An

Background

Differentiated cell nuclei can be reprogrammed to a pluripotent state in several ways, including incubation with oocyte extracts, transfer into enucleated oocytes, and induced pluripotent stem cell technology. Nuclear transfer-mediated reprogramming has been proven to be the most efficient method. Maternal factors stored in oocytes have critical roles on nuclear reprogramming and early embryo development, but remain elusive.

Conclusions

These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development.

Results

In this study, we showed most of porcine oocytes became nuclear matured at 33 h of IVM and the rate had no significant difference with oocytes at 42 h of IVM (p > 0.05). Moreover, the cleavage and blastocyst rates of SCNT and PA embryos derived from 42O were significantly higher than that of 33O (p < 0.05). But 33O could sustain IVF embryo development with higher cleavage and blastocyst rates comparing to 42O (p < 0.05). To clarify the development potential difference between 33O and 42O, 18 differentially expressed proteins were identified by proteomic analysis, and randomly selected proteins were confirmed by Western blot. Bioinformatic analysis of these proteins revealed that 33O highly synthesized proteins related to fertilization, and 42O was rich in nuclear reprogramming factors. Conclusions: These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。