Serum Proteomic Profiling in Patients with Chronic Obstructive Pulmonary Disease

慢性阻塞性肺病患者的血清蛋白质组学分析

阅读:5
作者:Sinan Wu #, Ke Huang #, Chenli Chang, Xu Chu, Kun Zhang, Baicun Li, Ting Yang

Conclusion

This study using data-independent acquisition analyses with PRM confirmation of findings identified 11 DEPs in the serum of patients with COPD. These DEPs are potential diagnostic or prognostic biomarkers or may be future targets for the treatment of COPD.

Methods

Serum samples were collected from 56 participants (COPD group n = 28; Healthy Control group n = 28). A data-independent acquisition quantitative proteomics approach was used to identify differentially expressed proteins (DEPs) between the two groups. Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment, and protein-protein interaction analyses of DEPs were conducted to identify their relevant biological processes, cellular components, and related pathways. We used a parallel reaction monitoring (PRM)-based targeted quantitative proteomics approach to validate those findings.

Purpose

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with high morbidity and mortality rates. This study used proteomic profiling of serum to identify the differentially expressed proteins in COPD patients compared with healthy controls, to expand the knowledge of COPD pathogenesis and to ascertain potential new targets for diagnosis and treatment of COPD.

Results

Of 8484 peptides identified by searching the UniProtKB/Swiss-Prot knowledgebase, 867 proteins were quantifiable, of which 20 were upregulated and 35 were downregulated in the COPD group. GO functional annotation indicated that the subcellular localization of most DEPs was extracellular. The top three molecular functions of the DEPs were signaling receptor binding, antigen binding, and immunoglobulin receptor binding. The most relevant biological process was immune response. The transforming growth factor-β signaling pathway, Staphylococcus aureus infection, and hematopoietic cell lineage were the top three pathways identified in the KEGG pathway functional enrichment. Our PRM analyses confirmed the identification of 11 DEPs identified in our data-independent acquisition analyses, 8 DEPs were upregulated and 3 DEPs were downregulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。