Enhanced Adsorption of Cd on Iron-Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil

漆酶介导改性形成的铁-有机复合物增强镉的吸附:对水稻土中镉的固定化意义

阅读:3
作者:Weilin Yang, Chunlei Huang, Xiang Wan, Yunyun Zhao, Zhengyu Bao, Wu Xiang

Abstract

The objectives of this study were to evaluate the cadmium adsorption capacity of iron-organic associations (Fe-OM) formed by laccase-mediated modification and assess the effect of Fe-OM on the immobilization of cadmium in paddy soil. Leaf organic matter (OM) was extracted from Changshan grapefruit leaves, and then dissolved organic matter (Lac-OM) and precipitated organic matter (Lac-P) were obtained by laccase catalytic modification. Different Fe-OM associations were obtained by co-precipitation of Fe with OM, Lac-OM, and Lac-P, respectively, and the adsorption kinetics, adsorption edge, and isothermal adsorption experiments of Cd on Fe-OM were carried out. Based on the in situ generation of Fe-OM, passivation experiments on Cd-contaminated soils with a high geological background were carried out. All types of Fe-OM have a better Cd adsorption capacity than ferrihydrite (FH). The theoretical maximum adsorption capacity of the OM-FH, Lac-OM-FH, and Lac-P-FH were 2.2, 2.53, and 2.98 times higher than that of FH, respectively. The adsorption of Cd on Fe-OM is mainly chemisorption, and the -OH moieties on the Fe-OM surface form an inner-sphere complex with the Cd ions. Lac-OM-FH showed a higher Cd adsorption capacity than OM-FH, which is related to the formation of more oxygen-containing groups in the organic matter modified by laccase. The immobilization effect of Lac-OM-FH on active Cd in soil was also higher than that of OM-FH. The Lac-OM-FH formed by laccase-mediated modification has better Cd adsorption performance, which can effectively inactivate the activity of Cd in paddy soil.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。