Distinct Expression of SLM2 Underlies Splicing-Dependent Trans-Synaptic Signaling of Neurexin Across GABAergic Neuron Subtypes

SLM2 的独特表达是跨 GABA 能神经元亚型的 Neurexin 剪接依赖性跨突触信号传导的基础

阅读:6
作者:Yuji Sato, Yoko Iijima, Mohamed Darwish, Tadayuki Sato, Takatoshi Iijima

Abstract

The mammalian brain contains multiple types of neuronal cells with complex assemblies and distinct structural and functional properties encoded by divergent gene programs. There is increasing evidence that alternative splicing (AS) plays fundamental roles in transcriptomic diversity and specifying synaptic properties of each neuronal cell type. However, the mechanisms underlying AS regulation and whether it controls synapse formation across GABAergic interneurons have not been fully elucidated. Here we show the differential expression levels of Sam68-like molecule 2 (SLM2), a major splicing regulator of neurexin (NRX), in GABAergic neuronal subtypes and its contribution to GABAergic synapse specification. Cortical SLM2 is strongly expressed not only in excitatory neurons but also in a subpopulation of GABAergic interneurons, especially in VIP-positive neurons that are originated from late-born caudal ganglionic eminence (GE)- derived cells. Using artificial synapse formation assay, we found that GE containing cortices form a strong synapse with LRRTM2, a trans-synaptic receptor of the alternatively spliced segment 4 (AS4)(-) of NRX. SLM2 knock-down reduced the NRX AS4(-) isoform expression and hence weaken LRRTM2-induced synapse formation. The addition of NRX AS4(-) was sufficient to rescue the synaptic formation by LRRTM2 in SLM2 knock-down neurons. Thus, our findings suggest a novel function of SLM2 in modifying network formation of a specific population of GABAergic interneurons and contribute to a better understanding of the roles AS plays in regulating synapse specificity and neuronal molecular diversity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。