Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

通过将新算法应用于时间进程微阵列和全基因组染色质免疫沉淀数据,以统计置信度识别 Pou5f1、Sox2 和 Nanog 下游靶基因

阅读:3
作者:Alexei A Sharov, Shinji Masui, Lioudmila V Sharova, Yulan Piao, Kazuhiro Aiba, Ryo Matoba, Li Xin, Hitoshi Niwa, Minoru S H Ko

Background

Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation.

Conclusion

We have identified the most reliable sets of direct target genes for key pluripotency genes - Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.

Results

To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。