Actomyosin contractility drives bile regurgitation as an early response during obstructive cholestasis

肌动球蛋白收缩性驱动胆汁反流作为阻塞性胆汁淤积期间的早期反应

阅读:4
作者:Kapish Gupta, Qiushi Li, Jun Jun Fan, Eliza Li Shan Fong, Ziwei Song, Shupei Mo, Haoyu Tang, Inn Chuan Ng, Chan Way Ng, Pornteera Pawijit, Shuangmu Zhuo, Chen-Yuan Dong, Boon Chuan Low, Aileen Wee, Yock Young Dan, Pakorn Kanchanawong, Peter So, Virgile Viasnoff, Hanry Yu

Aims

A wide range of liver diseases manifest as biliary obstruction, or cholestasis. However, the sequence of molecular events triggered as part of the early hepatocellular homeostatic response in obstructive cholestasis is poorly elucidated. Pericanalicular actin is known to accumulate during obstructive cholestasis. Therefore, we hypothesized that the pericanalicular actin cortex undergoes significant remodeling as a regulatory response to obstructive cholestasis.

Background & aims

A wide range of liver diseases manifest as biliary obstruction, or cholestasis. However, the sequence of molecular events triggered as part of the early hepatocellular homeostatic response in obstructive cholestasis is poorly elucidated. Pericanalicular actin is known to accumulate during obstructive cholestasis. Therefore, we hypothesized that the pericanalicular actin cortex undergoes significant remodeling as a regulatory response to obstructive cholestasis.

Conclusion

Actomyosin contractility induces the formation of bile-regurgitative vesicles, thus serving as an early homeostatic mechanism against increased biliary pressure during cholestasis. Lay summary: Bile canaliculi expand and contract in response to the amount of secreted bile, and resistance from the surrounding actin bundles. Further expansion due to bile duct blockade leads to the formation of inward blebs, which carry away excess bile to prevent bile build up in the canaliculi.

Methods

In vivo investigations were performed in a bile duct-ligated mouse model. Actomyosin contractility was assessed using sandwich-cultured rat hepatocytes transfected with various fluorescently labeled proteins and pharmacological inhibitors of actomyosin contractility.

Results

Actomyosin contractility induces transient deformations along the canalicular membrane, a process we have termed inward blebbing. We show that these membrane intrusions are initiated by local ruptures in the pericanalicular actin cortex; and they typically retract following repair by actin polymerization and actomyosin contraction. However, above a certain osmotic pressure threshold, these inward blebs pinch away from the canalicular membrane into the hepatocyte cytoplasm as large vesicles (2-8μm). Importantly, we show that these vesicles aid in the regurgitation of bile from the bile canaliculi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。