Mobilization of endocrine-disrupting chemicals and estrogenic activity in simulated rainfall runoff from land-applied biosolids

模拟陆地生物固体降雨径流中内分泌干扰化学物质和雌激素活性的动员

阅读:3
作者:Ben D Giudice, Thomas M Young

Abstract

Municipal biosolids are commonly applied to land as soil amendment or fertilizer as a form of beneficial reuse of what could otherwise be viewed as waste. Balanced against this benefit are potential risks to groundwater and surface water quality from constituents that may be mobilized during storm events. The objective of the present study was to characterize the mobilization of selected endocrine-disrupting compounds, heavy metals, and total estrogenic activity in rainfall runoff from land-applied biosolids. Rainfall simulations were conducted on soil plots amended with biosolids. Surface runoff and leachate was collected and analyzed for the endocrine-disrupting compounds bisphenol A, 17α-ethynylestradiol, triclocarban, triclosan, octylphenol, and nonylphenol; a suite of 16 metals; and estrogenic activity via the estrogen receptor-mediated chemical activated luciferase gene expression (ER-CALUX) bioassay. Triclocarban (2.3-17.3 ng/L), triclosan (<51-309 ng/L), and octylphenol (<4.9-203 ng/L) were commonly detected. Chromium (2.0-22 µg/L), Co (2.5-10 µg/L), Ni (28-235 µg/L), Cu (14-110 µg/L), As (1.2-2.7 µg/L), and Se (0.29-12 µg/L) were quantifiable over background levels. Triclosan, Ni, and Cu were detected at levels that might pose some risk to aquatic life, though levels of metals in the biosolids were well below the maximum allowable regulatory limits. The ER-CALUX results were mostly explained by background bisphenol A contamination and octylphenol in runoff, although unknown contributors or matrix effects were also found.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。