Conditional deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, increasing volume of remodeling bone in mice

分化破骨细胞中条件性删除 Bmpr1a 可增加成骨细胞骨形成,增加小鼠骨骼重塑体积

阅读:4
作者:Mina Okamoto, Junko Murai, Yuuki Imai, Daisuke Ikegami, Nobuhiro Kamiya, Shigeaki Kato, Yuji Mishina, Hideki Yoshikawa, Noriyuki Tsumaki

Abstract

Bone undergoes remodeling consisting of osteoclastic bone resorption followed by osteoblastic bone formation throughout life. Although the effects of bone morphogenetic protein (BMP) signals on osteoblasts have been studied extensively, the function of BMP signals in osteoclasts has not been fully elucidated. To delineate the function of BMP signals in osteoclasts during bone remodeling, we deleted BMP receptor type IA (Bmpr1a) in an osteoclast-specific manner using a knock-in Cre mouse line to the cathepsin K locus (Ctsk(Cre/+);Bmpr1a(flox/flox), designated as Bmpr1a(ΔOc/ΔOc)). Cre was specifically expressed in multinucleated osteoclasts in vivo. Cre-dependent deletion of the Bmpr1a gene occurred at 4 days after cultivation of bone marrow macrophages obtained from Bmpr1a(ΔOc/ΔOc) with RANKL. These results suggested that Bmpr1a was deleted after formation of osteoclasts in Bmpr1a(ΔOc/ΔOc) mice. Expression of bone-resorption markers increased, thus suggesting that BMPRIA signaling negatively regulates osteoclast differentiation. Trabeculae in tibia and femurs were thickened in 3.5-, 8-, and 12-week-old Bmpr1a(ΔOc/ΔOc) mice. Bone histomorphometry revealed increased bone volume associated with increased osteoblastic bone-formation rates (BFR) in the remodeling bone of the secondary spongiosa in Bmpr1a(ΔOc/ΔOc) tibias at 8 weeks of age. For comparison, we also induced an osteoblast-specific deletion of Bmpr1a using Col1a1-Cre. The resulting mice showed increased bone volume with marked decreases in BFR in tibias at 8 weeks of age. These results indicate that deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, thus suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。