Discussion
This pilot study is the first in vivo comparison of different gestational-age placenta-derived stromal cells for repair in the fetal sheep MMC model. The preservation of large neurons and markedly improved motor function in the lamb repaired with early-gestation cells suggest that early-gestation placental stromal cells may exhibit unique properties that augment in utero MMC repair to improve paralysis.
Methods
Fetal lambs (n = 4) underwent surgical MMC creation followed by repair with FM patch with term-gestation PMSCs (n = 1), FM with early-gestation PMSCs (n = 1), FM only (n = 1), and skin closure only (n = 1). Histopathology and motor assessment was performed.
Results
Histopathologic analysis demonstrated increased preservation of spinal cord architecture and large neurons in the lamb repaired with early-gestation cells compared to all others. Lambs repaired with skin closure only, FM alone, and term-gestation PMSCs exhibited extremely limited distal motor function; the lamb repaired with early-gestation PMSCs was capable of normal ambulation.
